Pearson Edexcel

Mark Scheme (Results)

January 2022

Pearson Edexcel International Advanced Level In Mechanics M3 (WME03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022
Question Paper Log Number P72404A
Publications Code WME03_01_2201_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- Amarks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \quad or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or \sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF .
- Use of $g=9.81$ should be penalised once per (complete) question.
N.B. Over-accuracy or under-accuracy of correct answers should only be penalised once per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),......then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads - if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations

M(A) Taking moments about A.
N2L Newton's Second Law (Equation of Motion)
NEL Newton's Experimental Law (Newton's Law of Impact)
HL Hooke's Law
SHM Simple harmonic motion
PCLM Principle of conservation of linear momentum
RHS, LHS Right hand side, left hand side.

Question Number	Scheme ${ }^{\text {a }}$
1.	$\begin{align*} & \text { Area }=\int_{0}^{a}\left(x^{2}+a x\right) \mathrm{d} x=\left[\frac{1}{3} x^{3}+\frac{1}{2} a x^{2}\right]_{0}^{a}=\frac{5 a^{3}}{6} \\ & \int \frac{1}{2} y^{2} \mathrm{~d} x=\int_{0}^{a} \frac{1}{2}\left(x^{4}+2 a x^{3}+a^{2} x^{2}\right) \mathrm{d} x \\ & =\frac{1}{2}\left[\frac{1}{5} x^{5}+\frac{a}{2} x^{4}+\frac{a^{2}}{3} x^{3}\right]_{0}^{a}\left(=\frac{31 a^{5}}{60}\right) \\ & \bar{y}=\frac{\int \frac{1}{2} y^{2} \mathrm{~d} x}{\int y \mathrm{~d} x}=\frac{31 a^{5}}{60} \div \frac{5 a^{3}}{6}=\frac{31 a^{2}}{50} \tag{7} \end{align*}$
M1 A1 M1 DM1 A1 M1 A1	Attempt the area by integration. Powers of both terms to increase by 1 . Correct area. Use $\int \frac{1}{2} y^{2} d x$ to give $\int_{0}^{2} \frac{1}{2}\left(x^{4}+2 a x^{3}+a^{2} x^{2}\right) d x$. Limits not needed. Squaring to be correct. For method mark, condone missing $\frac{1}{2}$ or any multiple. Attempt the integration (powers of at least 2 terms to increase by 1). Depends on second M mark. Correct integration and correct limits shown. Limits needed but substitution does not need to be seen. $\text { Use } \bar{y}=\frac{\int \frac{1}{2} y^{2} \mathrm{~d} x}{\int y \mathrm{~d} x}$ Note: This independent method mark is for use of the correct formula. Correct answer.

Question Number	Scheme Marks
2	Any correct sin or cos ratio. $\begin{aligned} & T \cos 60^{\circ}+N=m g \\ & T \sin 60^{\circ}=m r \omega^{2}=m \omega^{2} \times 2 l \sin 60^{\circ} \\ & \frac{1}{2} T+N=m g \quad \frac{1}{2} T=m l \omega^{2} \\ & \Rightarrow m l \omega^{2}+N=m g \\ & N \geq 0 \Rightarrow l \omega^{2} \leq g \\ & \omega \leq \sqrt{\frac{g}{l}} \quad * \end{aligned}$
B1 M1 A1 M1 A1 DM1 DM1 A1*	May be seen explicitly or used in an equation. Attempt at vertical resolution, 3 terms needed. Correct equation. Attempt an equation for NL2 along the radius, acceleration in either form but not ' a '. May have r and v in the equation. Fully correct equation with the acceleration in $r \omega^{2}$ form and radius in terms of l. Eliminate T Depends on both M marks above. Must see an equation still involving N. Use $N \geq 0$ Depends on all 3 M marks above. Must see correct inequality stated, not $N=0$ or $N>0$. Reach the given result from fully correct working.
ALT B1 M1 A1 DM1 M1 A1 DM1 A1*	For solutions that do not use vertical equilibrium but go straight to a vertical inequality. As above. Forming a correct inequality $T \cos 60 \leq m g$ Attempt NL2 as the main mark scheme. Eliminate T Depends on M marks above. Reach the given result from fully correct working.

Question Number	Scheme	Marks
3 (a)	$\begin{aligned} & m v \frac{\mathrm{~d} v}{\mathrm{~d} x}=m g \sin \alpha-\frac{1}{3} m x^{2} \\ & \frac{1}{2} v^{2}=x g \sin \alpha-\frac{1}{9} x^{3}(+c) \end{aligned}$	M1A1 DM1A1
ALT	$\begin{aligned} & x=2 \frac{1}{2} v^{2}=2 g \sin \alpha-\frac{8}{9} \\ & (v=3.728 \ldots) \\ & v=3.7 \text { or } 3.73\left(\mathrm{~ms}^{-1}\right) \end{aligned}$	DM1 A1cso (6)
	By energy: $\begin{aligned} & m g \sin \alpha x=\int \frac{1}{3} m x^{2} \mathrm{~d} x+\frac{1}{2} m v^{2} \\ & x g \sin \alpha=\frac{1}{9} x^{3}+\frac{1}{2} v^{2}(+c) \end{aligned}$	M1A1 DM1A1
(b)	$\begin{aligned} & x=2 \frac{1}{2} v^{2}=2 g \sin \alpha-\frac{8}{9} \\ & v=3.7 \text { or } 3.73\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & v=0 \Rightarrow x^{2}=9 g \sin \alpha=9 g \times \frac{2}{5}(x \neq 0) \end{aligned}$	DM1 A1
		$\begin{array}{ll} \text { M1A1 } & (2) \\ & {[8]} \\ \hline \end{array}$

Question Number	Scheme	Marks
4(a)	Ratio of masses: $4 \pi a^{2} \quad 4 \pi a \times k a \quad 8 \pi a^{2} \quad 12 \pi a^{2}+4 k \pi a^{2}$	B1
	Distances: (0) $\frac{k}{2} a \quad(1+k) a \quad \bar{y}$	B1
	$(0+) k \times \frac{k}{2} a+2(1+k) a=(k+3) \bar{y}$	M1A1ft
	$\left(\frac{k^{2}}{2}+2+2 k\right) a=(k+3) \bar{y}$	
	$\bar{y}=\frac{\left(k^{2}+4 k+4\right)}{2(k+3)} a *$	A1 * (5)
(b)	$\tan 60^{\circ}=\frac{\left(k^{2}+4 k+4\right)}{2(k+3)} a \div 2 a$	M1
	$k^{2}+4 k(1-\sqrt{3})+(4-12 \sqrt{3})=0$	A1
	$k>0 \Rightarrow k=5.8147 \ldots=5.8$ or 5.81 or better	A1 (3)
(a)		
B1		
B1	Correct distances from O or a parallel axis.	
M1	Attempt a moments equation. Must be dimensionally correct (not using volumes) and have no extra terms.	
A1ft	Correct equation, follow through their ratio of masses and distances Correct given expression with sufficient working	
$\begin{gathered} \mathbf{A 1}{ }^{*} \\ \text { (b) } \end{gathered}$		
M1	Use $\tan 60=\frac{\bar{y}}{2 a}$ or $\frac{2 a}{\bar{y}}$ May also use $\tan 30$	
A1		
A1	Obtain the correct 3TQ Correct value for k.	
	Note for (a):	
	The distance from O for the combined cylinder and base is $\frac{a k^{2}}{2(1+k)}$.	

Question Number	Scheme	Marks
$\begin{aligned} & \hline \text { ALT } \\ & \text { (e) } \end{aligned}$	$\begin{aligned} & 1.5=4 \sin \left(\frac{1}{5} \pi t\right) \Rightarrow t_{A}=\frac{5}{\pi} \sin ^{-1}\left(\frac{1.5}{4}\right) \\ & 2.5=4 \sin \left(\frac{1}{5} \pi t\right) \Rightarrow t_{B}=\frac{5}{\pi} \sin ^{-1}\left(\frac{2.5}{4}\right) \\ & { }_{A} t_{B}=t_{B}+t_{A}=\frac{5}{\pi} \sin ^{-1}\left(\frac{2.5}{4}\right)+\frac{5}{\pi} \sin ^{-1}\left(\frac{1.5}{4}\right)=1.6862 . .1 .7 \text { or bette } \end{aligned}$	
6(a)	$\begin{aligned} & T=\frac{\lambda x}{l} \Rightarrow 30=\frac{\lambda \times 0.3}{0.5} \\ & \lambda=50^{*} \end{aligned}$	
(b)		B1
	$\begin{aligned} & T=\frac{50 \times 0.5}{0.5}=(50) \\ & \mathrm{R}(\uparrow) \quad 2 T \cos \theta-1.2 g=1.2 a \end{aligned}$	M1A1ft M1
	$100 \times \frac{3}{5}-1.2 \times 9.8=1.2 a$ $a=40.2 \quad a=40$ or $40.2 \mathrm{~m} \mathrm{~s}^{-2}$ (positive)	A1ft A1 (6)
(c)	$\text { E.P.E. }=\frac{1}{2} \times 50 \times \frac{0.5^{2}}{0.5}$	B1ft (any correct EPE)
	$1.2 g \times 0.3+\frac{1}{2} \times 1.2 v^{2}=\frac{1}{2} \times 50 \times \frac{0.5^{2}}{0.5}-\frac{1}{2} \times 50 \times \frac{0.3^{2}}{0.5}$	M1A1A1
	$\begin{aligned} & v^{2}=\frac{1}{0.6}\left(25 \times \frac{0.5^{2}}{0.5}-25 \times \frac{0.3^{2}}{0.5}-1.2 \mathrm{~g} \times 0.3\right)(=7.452) \\ & v=2.730 \ldots=2.7 \text { or } 2.73 \mathrm{~ms} \mathrm{~s}^{-1} \end{aligned}$	DM1 A1 (6)

7

(a) $\quad \operatorname{mgl}(\cos \theta-\cos \alpha)=\frac{1}{2} m u^{2}-\frac{1}{2} m v^{2}$
$v^{2}=u^{2}-2 g l(\cos \theta-\cos \alpha)$
(b) $\quad \cos \alpha=\frac{2}{5} \quad v^{2}=3 g l-2 g l\left(\cos \theta-\frac{2}{5}\right)$

At top $\theta=0^{\circ} \quad v^{2}=3 g l-2 g l \times \frac{3}{5}$
$v^{2}=\frac{9 g l}{5}$
$v^{2}>0 \Rightarrow$ complete circle *
(c) Equation of motion along radius at lowest point: $k T-m g=\frac{m w^{2}}{l}$ $\theta=180 \quad w^{2}=3 g l-2 g l\left(-1-\frac{2}{5}\right)=\frac{29 g l}{5}$ $k T=\frac{m}{l} \times \frac{29 g l}{5}+m g=\frac{34 m g}{5}$
At highest point: $\quad T_{2}+m g=\frac{m v^{2}}{l}$
$\theta=0 \quad T=\frac{9 m g}{5}-m g=\frac{4 m g}{5}$
$k \frac{4 m g}{5}=\frac{34 m g}{5} \Rightarrow k=\frac{17}{2}$
M1A1A1
A1* (4)

M1 A1
(a)

M1 Attempt energy equation from A to general position. Must have a difference of 2 PE terms and a difference of 2 KE terms.
A1
A1
A1*
Correct gain in PE or loss of KE
Fully correct equation
Reach the given result from fully correct working
(b)

M1
A1
Sub $u=\sqrt{3 g l}$ and $\cos \alpha=\frac{2}{5}$ in the result in (a)

Correct equation
A1*
Put $\theta=0$ to find an expression for v^{2} at the top (maybe finding KE)
(c)

M1
A1
M1
M1
A1
Form an equation of motion along the radius at the lowest point. Acceleration in either form.
Correct equation with acceleration in v^{2} / r form
Use $\theta=180$ in result from (a) to obtain an expression for w^{2}
Eliminate w^{2} and obtain an expression for $k T$
Correct expression for $k T$
Form an equation of motion along the radius at the highest point. Acceleration in either form.
Sub $\theta=0$ and obtain an expression for T
Correct expression for T
Correct value of k. Must be exact.
The equation of motion at the top may be seen first. Award M1A1 for either equation correct and M1 for the second.

Question Number	Scheme	Marks
$\begin{aligned} & \text { ALT1 } \\ & \text { 7(c) } \end{aligned}$	Better equation of motion at top or bottom: $\begin{aligned} & T-m g=\frac{m v^{2}}{l} \\ & T+m g=\frac{m v^{2}}{l} \end{aligned}$	M1 A1
	Other equation of motion - see above	M1
	Finding speed at the bottom: $\theta=180 \quad w^{2}=3 g l-2 g l\left(-1-\frac{2}{5}\right)=\frac{29 g l}{5}$	M1
	Finding maximum Tension (lowest point) $\theta=180, T=\frac{m}{l} \times \frac{29 g l}{5}+m g=\frac{34 m g}{5}$	M1 A1
	Finding minimum Tension (highest point) $\theta=0 \quad T=\frac{9 m g}{5}-m g=\frac{4 m g}{5}$	M1 A1
	Dividing Tensions to reach the correct answer $k \frac{4 m g}{5}=\frac{34 m g}{5} \Rightarrow k=\frac{17}{2}$	A1

Question Number	Scheme	Marks
$\begin{aligned} & \text { ALT } 2 \\ & 7 \text { (c) } \end{aligned}$	General equation of motion: $T+m g \cos \theta=\frac{m v^{2}}{l}$	M1 A1
	Use of $u=\sqrt{3 g l}$ and $\cos \alpha=\frac{2}{5}$ to replace v^{2} in their equation of motion	M1
	Finding speed at the lowest point: $\theta=180 \quad w^{2}=3 g l-2 g l\left(-1-\frac{2}{5}\right)=\frac{29 g l}{5}$	M1
	Finding maximum Tension (lowest point) $\theta=180, T=\frac{m}{l} \times \frac{29 g l}{5}+m g=\frac{34 m g}{5}$	M1 A1
	Finding minimum Tension (highest point) $\theta=0, T=\frac{9 m g}{5}-m g=\frac{4 m g}{5}$	M1 A1
	Dividing Tensions to reach the correct answer $k \frac{4 m g}{5}=\frac{34 m g}{5} \Rightarrow k=\frac{17}{2}$	A1

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

